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USE OF SOURCE DISTRIBUTIONS FOR EVALUATING THEORETICAL AERODYNAMICS
OF THIN FTNITE WINGS AT SUPERSONIC SPEEDS

By JOHNC. EVVAZD

SUMMARY

i!. series of publications on the sourcedistribuiimt methods
for eduating the aerodynamics of thin wings at supersonic
speeds is summarized, extended, and unified. Included in
fhefirst part of fhis repoti are the deriraiions of: (a) the lineari-
zed partialdijereniial equation for unsfeady jlaw at a mL7)-
stantially consfani illach number; (b) the sourcedish-ibwtion
solution for fhe perturbation-relom=typotential that sa.tis~es
the boundary conditions of tangentialjlow at the surface and
in the plane of the wing; and (c) the integral equation for
defmnining the strength and fhe location of sources to describe
the interaction effects (as represented by uptcash) of the bottom
and top wing surfaces through the region between the finife
wringboundary and the foremost Mach uuce.

The second part of the report dealswith sfeady-sfafethin-wing
problems. The solution of the integral equationfor wpuush is
presented and applied in mu.merousexamples to obfain the
velocity potential and loading for several families of curved
plan boundary wings. The concept and the evaluation of the
suction force along subsonic leading edges are included. 2%e
loading associated wifh the vortex sheet (or discontinuity in
sidewash) behind subsonic frailing edges is described and
emduafedfor m“ngs satisfying the Kuffa-Joukowski condition
along subsonic trailing edges.

The third part of the report approximates the integral equa-
tionfor unsteady upwash and includes a solution of the approa+
mate equation. IZcpressions are then dericed to etxzlua.tethe
load distributionsfor timedependent jinite-uin.g motions.

INTRODUCTION

The tmaIysisof the aerodjnmmic effects in the vicinity of
thin wings at supersonic speeds can be simpI%ed by Linear-
izing the partial-differential equation of a compressible
fluid. This linearization is accomplished by assuming that
the perturbation-velocity components associated with the
wing are smaIl in comparison to the -velocity of sound and
that the free-stream XIa.ch number is sufficiently difFerent
from unity. SoIutions to the Linearizedpa.rt.iaI-diffe.rential
equation of the flow that satisfy the boundary conditions
in the vicinity of the wings must then be found. The flow
must be tangent to the wing at its surface and no disturbances
can propagate ahead of the forward Mach enveIope of the
wing.

Numerous approaches lead to soIut.ionsof the steady+tate
thin-wing problems. For twodimensional wings, the Ack-

eret theory (reference 1) may be applied to evaluate both
lift and wave-drag coefficients. The line-source and point- .
source methods of references 2 and 3 maybe effectively used
to obtain solutions for the aerodynamic coefficients of three-
dimensional wings if the flow on the bottom and top surfaces __
are independent. This condition hoIds for wymmetric tinga
at zero angle of attack and for wing regions influenced only
by supersonic Ieading edgea. (That is, the component of the j
flow normaI to the edge is supersonic.) JYing regions Mu-
enced by upwash in the flow field between the wing boundary
and the foremost Mach lines, however, must be exchded.

The effects of the up-washfieId mny be evrdua.tedfor wings
of st.raight-IinepIan boundaries by the conicd-ffom method
of references 4 to 6. The doublet-distribution method of
reference 7, as applied to the t.rianguhw wing, inherently
incIudes the effect of upwash fieIds and may conceivably be
extended to obtain quite general solutions for thii three-
dimensions.I wings. An approach to this extension and a
synthesis of t-hevarious methods as speciaI cases of a genertd
theory are included in references 8 and 9. The appIicatiop
of horseshoe -vortices for solving the finite-wing problem is
incIuded in reference 10.

The timedependent aerodymunic effects (including the
transient disturbances of gusts, changes in angIe of attack,
skin vibration, and flutter) near thin wings at supemonic ..... .
speeds are more ditlicult to obtain. A number of in-rest.i-
gators have studied two-dimensional time-dependent flows
over thin wings; these flows are generaIIy included as special
cases of the theory of reference 11. The method of refer-
ence 11is similar to the steady-state method of reference 3 and
inohdes three-dimensional or flnke-wing solutions so Iong as
the aerodynamic etlects of the bottom and top wing surfaces
are independent.

If the upwash in the flow field between the wing boundary
and the foremost Mach wave could be evaIuated, the methods
of references 3 and 11 could be applied to determine the
aerodynamic coefficients in the flow field of lifting three-
dimensional thin wings at supersonic speeds. llk approach
to the evaluation of the upw-ashfield implicitly or e.xpIicitlyhas
led to the methods of soIut.iondeveloped at the N.*CA Lewis
laboratory and presented in references 12 to 19. The work
incIuded in these reports is extended and unified herein.

The fundamental equations are derived in general form in
the first part of the report. The applications of the integral
equation for cIetermining up-wash to obtain the flow o-rer
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wing surfaces for time-independent and time-dependent
problems are includcdin the second and third pints, respec-
tively. Spccifm examples tire included at pertinent points
throughout the discussion.

I—INTEGRAL EQUATION FOR UPWASH

In order to unify the discussion, parts of the fundamental
treatment of reference 11 are repeated. A similar discussion
for steady+t.ate potentials is given in reference 3. The
presentation includcs the derivat.ions of: (1) the time-
dependenti~Linearized partiaMifferentia.1 equation for the
perturbation-velocity potentiaI of an ideal fluid, (2) the
fundamental solution that will satisfy the boundary conditions
on the wing, and (3) the integral equation for the upwash
over the wing plan boundaries.

Differential equation,—The linearized Euler’s equations
for a compressible fluid may be written

where
P
t
u
z, y, z
Po

Q
.

ZYp ?Pgo 1 ap
~t+u-=–– —po?lZ

static pressure

(1)

time
free-stream velocity
Cartesian coordinates (free stream parallel to z-axis)
free-stream density
perturbation-velocity potential (based on free-stream

velocity)
(For convenience, a complete list of symbok is included in
appendix A.)

When equations (1) are multiplied by dx, dy, and dz,
respectively, added, and integrated, the result is

where g(t) is an integration constant at any given time.
The linearized continuity equation assumes the form

(2)

(3)

or, because the speed of sound c is

equation (3) becomes

Elimination of ~ between equations (2) and (3a) gives

where M is the frm-strea.mMach number and the subscript
has been dropped from c.

Equa@on (4) is the required Linearizedpart.ial-differentia~
equation for steady or unsteady velocity potentials. If P and
g are independent of’ time, the Prandtl-Glauert equation
results.

If the flow ahead of the body is uniform and undisturbed,
the function g(t), which is independent of position, will be

d
constant (from equation (2)) and equal to ~; tho term 3_t
wiII then”contribute nothing to equation (4). under these
conditions, which are assumed for the rest of the analysis,
equation (2) may be written

Tk+m)cp=p=–zap I ap
~ poUg

(2a)

where CDis the pressure coefficient.

A change of variable will convert equation (4) to a standard
form of the wave equation. The transformations are

x’ =x

y’=@7iny

Z’=J=TFZ

p= (1–M2)t+z$

Equation (4) then becomes

(5)

(6)

Basic solutions of equation (6) corresponding to spherical
waves are

‘=+’[-;(’’+31
and

‘=+’[-+(’’-31 }
where .-

(7)

R’=~ x’:_+ y’~+z’2

/32=M2-l

f arbitrary function representing a source strength

Garrick and Rubinow have shown (reference 11) that tho
basic solution for M> 1 is obtained as the sum of equa-
tions (7). If this sohtion is transformed to a general point
in the x,,y, z space, each of the addends becomes a retarded
potential in the basic solution of equation (4), which is

(8)
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where & q, and ~ are Cartesian coordinates of the source, and
R is given by

~=~(z–g)’–p~~–q)’–(z(~)~)’ (9)

IMended solutions of equation (8) may be obtained by
integration with respect t-o any of the variables & q, or ~.
For thin wings, the sources of the disturbances will lie in the
plane of the wing, whkh may be defied by the relation
~=0. The immediate problem is to determine the strength
of the source f in order t.o satisfy conditions of tangential
flow on the surface of the wing, which in Iinea.rizedtheory
is treated as though it were in the z=O plane.

Fundamental solution for thin wings.—The impulses that
the wing transfers to the fluid are primariIy in the zdirection.
This fact suggests that the strength of the sourcej is cIosely
associated with the z component of the perturbation velocity

apax The value of ~
az at each local point on the constraining

wing surface is determined only by the local wing slope near
that point.

The z component of the perturbation velocity obtained
by differentiating the isolated source solution of equation (8)
is

!!&=_$$ (lo)

The wing dictates that ~ cannot be zero near z=O. Equa-

tion (10), however, indicates that ~ will be zero in the

z,y plane except at points near R=O. (Infinite values of
bp
~z are generally included in this condition.) The quantity

R is nearly zero either close to the source, where (z–f),
(Y-~), ~d z are small, or on t-he boundary of the Mach
cone from the source, where (x—~)a=192[(y-n) 2+#]. As
may be veri6ed by direct calculation in specific examples,

Z@
the second condition does not contribute to the value of ~

at the point (z,y, O) on the constraining wing surface.
In t-he vicinity of the point (z,y, O), the source strength

per unit area assumes a mean value obtained by replacing
t and n by x and g in the source strength f of equation (8).
The velocit.y potential at point (x,y, z) associated with this
substant,ialIyconstant source distribution in the z=O plane
may be obtained by integration over the source area included
in the forward Mach cone. The field of integration (fig. 1)
is bounded by the curves f=.$i and (Z—g)2—#z(y—~)*—@2z*=O
yiehling the velocity potential

(11)

For steady flows, this equation is the .4ckeret value for the
potential of an unswepi twodimensional flat plate and repre-
sents the contribution of the local point to the velocit.y

potential near that point. Partial differentiation of equa-
tion (11) with respect to z gives

ap
~=w(x,y, t) = —2rf (x)y, t) (12)

-wherew is the loc.a.lz component of the perturbation velocity
measured positively outward from the wing surface. The
function~ at an arbitrary point (.$,~) is thus proportional to
the z component of the perturbation -iwIocity at that point.

The fact that ~ from equation (12) is independent of& illus-

trates that the sources aIong the Mach cone for which R=O do
not contribute tow. (~eit.her t-hebasic solution of equation (8)
nor its derivative, equation (10), is defined on the Mach cone.
The integration, equation (11), of the basic source solution
and the derivative, equation (12), of equation (11) me, how-
ever, defined functions. The order of integration and differ-
entiation of the basic source solut.ionto obtain equation (12)
cannot be interchanged without special precautions.)

ii condensation of the notation is advisable at this point.
The time delays that occur in equation (8) c-anbe denoted by
r= and rb where

Functions of the time delays may then be abbreviated as

~c=f(t, %~-~a)

~iI=j(& ~,t–~b) 1 (14)

f.rb=j%, %t-~a) +j%, q,t–~o) ,

In this notation, the velocity potential that is obtained by
integrating the sources in the z= O plane over the area S
included in the forward Mach cone is .. ..-

Equation (15) was derived in reference 11 for timedependent
velocity potentials and in reference 3 for time-independent
velocity potentials.

FIGUREl.—F[eId of fntegmtion for evaluating velocity pateutfd (mnatIon (IO))neer plane
of .wImJ3+.

A physical interpretation (reference 11) may be given for
the time delays, r= and r, of equations (8), (13), and (15).
If a disturbance is generated at point (.&~)only at time t=O, __



74 REPORT 951—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

the wave front from that disturbance will be spherical about
a. center that moves with the free-stream veIocity. The
trace of the waves on the z=O plane is illustrated in figure 2.
The wave front WWenter and emerge from the point (x, y, z)
at hYO ktkr tb3S r. and rb. The equation for the spherical
wave path that passes through the point (z, y, z) is

(x–~– W)’+ (y–q)’+z’=c%’
or

_(z–W*&W-i’(&q)’-W
T– @ fl’c

which agrees with equation (13). “Thus, at a given point
(~, y, 2),the strength of the same wave at the two times r=
and rb(in accordance with equation (15)) contributes equally
to the velocity potential despite the change in the radius of
the wave front. At a given time t, only the wave fronts
that are entering and emerging from the point (x, y, z) con-

+
xor(

.

FIGURE2.—Relatfon between time delays T. ancl Tband Position of wave front.
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FIGUBES.-Comparison of Cartcah.n end obIique coordinate systems.

tribute to the velocity potentiaI. These two waves originated
at Q,q,O) at hICS (if— r.) and (t—Tb).

The-potential on the surface of tho wing may be evduatccl
by equation (15) with z set equal to zero. The boundmics of
integration then include the forward Mach lines from the
point (x,y,O). The integrations may generdy be simplified
iu an ob~ique set of coordinates whose axes lie parallel to
these. Mach lines. The transformation equations rela[.iug
the oblique and Cartesian coordinat.o systems shown in
figure.3 are

-.

(In references 12 to 19, the symbols u and o were employed to
represent the oblique coordinates. These symbols were re-
placed by r and s in the present report to avoid confusion
with the common usage of u and v as velocity component-s.)

The elemental area in the r,s coordinate system is #fir ds.

Equa@ons (15) and .(13) then become (for z=O)

(17)

I

If tinly supersonic leading edges are included @ tho
forward Mach cone from point (ru,sw),w maybe evrduutcd
in terms of the effective wing S1OPCSa measured in q=con-
stant pla.ncsby the relation

W=uu (19}

(The value of r would thus be positive for either top. or
bottom surface of a wedge wing fit zero angle of attack.) If
a subsonic leading (or trailing) edge is also included in the

forward Mach cone, the slopes of the streamlines h=;

associated with the upwash between the wing boundary and
the foremost Mach wave must be Qvaluatcd and inchded in
the calculation (equation (17)) for tho velocity potential.
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Integral equation for upwash between wing bonndary
and foremost Mach line,-Equation (17) contains no
description of the origin of w; the velaci~y potential in the
flow field ~~ of figure 4 may then be independently calculated
with respect to either the top or bottom wing surfaces.
These two potentials are

u
–U

(UT).,bdrck
‘T=–2.VT ~

—
S.II(rD—r) (8D—8)

~?

– IT (da. bdr~s +
‘B=–2Mlr~ s. II(rD—r) (8D —4$

(20)

(21)

where r~ and SD are the coordinates of the point at which ~
is evaluated, aT.and ~B are the dopes of the wing on its top
and bottom surfaces, and k represents the slopes of the
st.reandinesin the field SD from the point of view of the top
wing surface. The pressure may be calculated by sub-
stituting” either equation (20) or (21) into equation (2).
Because no pressure cliscontinuity can persist across the .SD
region of t-he2=0 plane,

Equation (22) has t-hesolution

where 1+1is an integration function. From equations (20),
(!21), and (22a], there result

u
I’S

(aB+uT).,bdr ds ~g_—
“= NIT.

(204
s. 2 ~l(j-D —r) (SD—8)

~T–u (~B+da, bdrdg_ll
*B=–mr= (IIISJ

s. 2~l(rD—r) (8D—8]

u Ssha,bdr ds——
2MT SD~/(rD—r) (8D—8)

u
SS

(UB–~.)., bdr ds ~H
= –ZTZ

(2~b)
s. 2J(rD—r) (sD—s)

The function 2E7 represents the difference in potential
across the z= Oplane (equation (22a)) corresponding to the
strength of vorticity in the wake of the wing. For ant.i-
symrnetric wings, d-r~=O and His the potential on the
top surface of the ~ortex sheet.

The foremost llach wave (fig. 5) originating on the leading
edge generally represents a line of infinitesimal disturbance

along which H may be set equal to zero at all times. The
function I-Zremains zero along y=constant lines for value9 _ ___
of z not intercepted by the wing or material body (region
s~, ~ of fig. 5 (a)). The region ~D,I genera@ contai~ a “

. ..—.—

vort~x sheet lying in the pIa.ne of the wing, and H is not
zero. The function H(y), established along the wing edge
at some time t,remains umdtered for later times along a
curve that sweeps downstream with the free-stream velocity
and has th~ form of the wing traiIing edge.

(a) FWdS ofintegrationforevahmtfngurm+eh Mm-en W&fIOUII~YM@foreruos~~ch.
vial-e.

{b)

(h) Fields of inteaation for equatiom @} and (29).

FIG~E 4.—Wiig regfon fnduenced by fsolated subsor!k Ieadu edge.

Equation (22b) represents the integral equation for evalu-
ating the slopes of the streamlinesin the upwash field. These
slopes may generally be defined by the following two equa-
tions:

JT*SD

and
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The actual slope A is then the sum of the solutions for the
slopes obtained from equations (23) and (24):

~=b+hf , (25)

For regions such as SDof figure 4 (a), 11=0 and only equation
(23) need be considered. For steady-state solutions, the time-
delay notation a, b maybe disregarded in equation (23).

II—TIME-INDEPENDENTFLOWS .

The concept leading to the derivation of equations (23)
and (24) may be extended in principle to define the upvmsh
velocity components in the plane of arbitrary thin wings at
supersonic speeds. Equation (17) then yieIds the velocity
potential from which the aerodynamic coefficients may be
derived. The effects of the upwash field have been evalu-
ated for a class of curved plan-form wings, and the corre-
sponding velocity potentials of time-independent con6gura-
tions have been dyived. Included in the c.alcultitionsare
wings with subsonic leading and trailing edges connected to
supersonic leading edges and a few cases of wing regions
influenced by interacting upwmh fields.

Evaluation of isolated regions of upwash off subsonic
leading edges,—The steady-state solution of equation (23)
is conveniently derived for the wing of figure 4. The origiu
of coordirmtes is placed at the junction of the supersonic and
subsonic leading edges. These are defined, respectively, by
the equations

. .s=sl (r) or r=r~ (s)

I
(26)

s= Sz(r) or r= r~(.s)

Equation (23) then becomes

Jr’%% f:) /&-J”*c ‘;;*
(27)

(Inasmuch ask= is zero, i, is replaced by Xin equation (27).)
Because equation (27) must hold for aI1values of r~, which

does not appear in the integration with respect to ~, the
equation may be reduced to

J
8“ ~=

–J
‘z@j(qj—CT)d8

62(r)&-8 81C’) 2 >/8~8 “““-(27a)

This reduction shows that for steady-state solutions only the
wing slopes along the forward Mach line contribute to the
upwash at the point (r~, 8D).

Equation (27a) may be solved, as in reference 14, as an
example of Abel’s equation (references 20 and 21) to give

‘P!”i:m....-.....-.
‘..-

‘-/SD*,H#o

s=.,
H=0

(a)

(8) DMafon of externaI field & for awduation of H.
—-

(b)
(b) hfd (rDjd on vo~hx shed.

(c) Point (r., s.) on wing surface.

FIOURr 5.—integration boundaries for evaluating wfng region Iritlncnecd by eubeordotrniflng
edge.
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where o has replaced s
tion (27b) may also be

A

as a variable of integration. Equa-
expressed in differentia.1form as

(27c)

where a wing element of length do and having the effective
d~— ffT

slope ~ at point (r,v) produces an increment dh at point

(r,s) (fig. 6). Either by interchange of the order of integra-
tion in equation (27b) or by integration of equation (27cj,
an alternative expression for X resuh.s

h(r,!s)=
1

J
82(UE—ar) 482 — U du (27d)~r>~z q 8—U

1vWing bourdnq
r=vi(a)or s=st@]-

..-
-/

/
.- -..

/ - --
r -..

--sorm

FIGCRE6.—Geomh’ic significance of factora in aquatkm @d).

If (UB–CT)is independent ofs, either equation (27b) or (.27d)
gives

h(r,s) =
(all– @j

[J
~z (r) — 81 (~) _ tan-l

7r ??-s~ (r) t$zx)l‘27’)
Aerodynamic effects of isolated regions of upwash.—

The contribution PD of the upwash field SDto ihe velocity
potential on the surface of the wing in figure 4(b) may be
computed from equations (17) and (19) as

?
u rdu.) dr

J J
% k ds

PD=—- — ‘—
MT , &=i 8ZC0 48w-8

If h is eliminated from equation (28) by means of
equation (27a) or equation (27d), there results

~T r2(su) dr

J J

WI (aB — m=) ds
‘D— MT ~

_—— —_
~~r ~,(~) 2 I\8W—8

u
J’s

(u,–-LT,) tir ds
= –.KT s.. 2 ~(ru–r) (SW–8)

The contribution of the upvrash field is thus replaced

(28]

either

(28a)

by an
equivalent contribution on the wing surface. ‘The su~face
velocity potential at (rw,sW)then becomes

(29)

.For thin-plate wings, or for antisymmetric solutions (such
as emduation of the effect of uniform rate of roU), (OJ+rr) = O
so that the integration over the area SW.1 vanishes. In this
case, the contribution to P of the upvmsh field cancels the
direct contribution of the part of the wing thah generated
the upwash field. Hence, alteration of the thin-plate-wing
plan boundaries in t-heregion S.,2 (fig. 4 (b)) does not salter
the surface velocity potentia~ at point (rw,su). (h elegant
derivation of this fact is presented in reference 22. Because
there is no contribution to the velocity potential ahead of
the forward Mach cone, equation (17) may be written for
steady boundary conditions as

Two auxiliary point functions may now be. defied as

In terms of these point functions, the velocity potential is

Each of these equations for .X”,F, ancl P fire forms of Abel’s
equation and may be solved accordingly. For an anti-
symmctric wing of plan boundary as shown on fig. 4 (b),
P (r, SW}=0 if r<rz(8J. IIence 1“ is zero for this range also.
The -relocity potential may then be evahmted only from t-he
region Su,l of fig. 4 (b).) Pressure coefficients may be ob-
tained by substituting P from equation (29) into equation
(2a). Perturbation-velocity components are obtained from
the gradient of P.

As illustrations of equation (29), two examples are pre-
sented. The first.is a wedge wing (fig. 7) with plan-boundary
equations ~= —klr and s=kzr. The wing slopes are taken
as u~=a+a and a~=a— a, where % is the wedge angle and
a is the angle of at.tack. The velocity potential on t-hetop
surface of the viing is then (reference 12)

(30)

This solution for P is the addition of terms thfit are dependen~
on and indepmdent of the angle of attack. The effects of angle
of attack may therefore be evaluated on flat-plate wings
whose pIan boundaries coincide with those of the chosen
wing. This example illustrates a general superposition
principle that foIIows directly from the linearity of equa-
tion (15) with respect to e~therw or a (from equation (19)).
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The veloci~y potential of a flat-plate wing (fig. 8) having a
straight-line leading edge s= -klr coupled to an arbitrary
subsonic leaciing edge s= s&) or r= r~(s) may SIS.Obe
evaluated explicitly. In this example, uB= —u~=a, so that
P is

where rz is a function of Su. The factor multiplying cc in
equation (30) may also be obt.&cd from equation (31) by

setting r2=&

Some complications occur Kthe supqsonic leading edge is
connected to two subsonic leading edges that are located “in
the forward Mach cone from the point (rw, s.) (fig. 9). The
contributions to the velocity potential of each of the upwash
fields may be independently ccdcula.tcdfrom equations (28)
and (28a) to give —-.

P’
r
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A
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FIOURE8.–Boundmy limits for oqunthn (31).
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FKWRE 9.–Regiomc of futegration for calculating velocity POt@hSd On SUrftMOof whil Of
ffnite thic@_ess influenced by two intlepcndent perturbed flow Mds extcrna~ to wing
surface.

-.

Addition of these contributions to those of the wing area
&o(l.f.2~3~4)j as evaluated by equations (17) and (19), give9
(referenee.12)

u
SS

(uB+u,)dr dS
P=—l~ s. 0+02 (rW—r)(sW—s)—

u
H

UBdr ds
TX S.,: J(rw—r) (s.—s) — _

u
Ss

UTdr ds
ZG .s.,, J(rti-r) (8W–S)

(34)

The role of a=and a~is thus effective.lyinterchangcd for the
regions of integration&a. Likewise, for antisymmetric con-
figurations (a~+a~ = O), the areas .&,l and iSW,$give no
contribution to the velocity potentitd,

--
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Aerodynamic effects of interacting regions of upwash.—
If interacting up-ivash fiekis are included in the forward
Mach cone from the point (r., s.), as in the shaded region of
figure 9, parts of the upvmsh field must be evaluated before
the velocity potential can be computed. The effective wing
in appbcation of equation (34) includes the upwash fields
SD,I and SD,z (fig. 10) for which r~–h. The velocity
potential may then be written 4

u
SS

(u,+ a.) dr 0?s _
‘=–z S.0+3 2-J (rW—?’)(SID-S)

~T

SS
UBdr ds

Ii7i s.., ~i(ru—r) (~8J —

I u
J’s

uTdrds
ATT s.., J(rW-r) (8U—S)+

u
SS

Aldr ds
— sDJJ(rw–r) (SW–8)+MT

~ SJ9 A2dr dS
I%.! ~i(r.—-r)(SW—S}

(35)

Each of the upwash streamline slopes maybe ewduated by
equations similar to equation (2id). In the notation of fig-
ure 10 (and with u rep~acing s as a variable of integration),
the contribution of the flow fieId ~D,Iis

Interchange of the order of integration with respect to v and s and evaIuat.ionof the integral with respect to v give

uH’ h,d ds u
U [

(S3–8) (s.+82–%) –2(s,–s) (SW–S) (m-r.)drds——
Mu *

——
SD.1 ~(rm—@ (SW—L?) = 2.11$. .~=,, ~+tan-’

24(s2–s) (s.–s) (s.–s3) (s3–s%) 1 ~(r.–r) (8.–s) ‘36a)

where SSis a function of rw and Szis a function of r. (Equation (36a) reduces to the form of equation (28) when su=s~(r.).)
Likewise,

u
sf

AZdr ds u
–SS [

~,m_l (rZ–r) (rw+ra–2r) –2(r3–r) (rW–r) (~B–uT)dr ds——
M7r * = –2M# S... ~+ 1

(37}
SD.2 ~l(ru—r)(8E—s) 2J(r3—r) (rW—r)(rw—7@(7-Z-TJ II(rW—r)(sW—s)

where Tzis a function of SWand rs is a function of s. Elimination of kL and & between equations (35), (36a), and (37) yields
the velocity potential in terms of the wing slopes and pkm-boundmy equations. An alternati-re scheme (suggested in refer-
ence 14) would be to derive aIIof the upwash slopes x by means of equations similar to equations (27b) or (27d) and then to
evaluate p directly from equations (17) and (19). More complicated exa-mples inchding doubly interacting external
upwash fields may be solved in a similar manner.

If the upwash fields continuously interact as they do for
the wing shown in figure 11, the sohrtion of an integral
equation is required (reference 14). The slopes of the
streamlines from equation (27d) -in the upwash region
~~. ~are

S
*: A2(r,0)G do
o (s–u) 1 (38)

where u is the integration -mria.blein the s direction and SZ
and .ssare functions of r.

SrniIarly,

(39)

where w is the integration variable in the r direction and rl
and r~ are functions ofs. The functions Al and & can there- MxrEE 10.—WingSncIudingregions of Intemctii uprn%shfieId.%
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fore be determined from the two equations, at least in
principle, either by successive approximations or by direct
substitution and solution of the resulting integral equation.
(If the wing has a symmetrical plan form about the x-axis,
X2(T,s)=hl (s, r) and the two equations (35) and (36) become
the same. If the flow is conical, either X1or X2is a function
of @.) Onoe the slopes of the streamlines in the upwash
field are determined, the velocity potential may be evaluated
from equations (17) and (19).

Calculation of perturbation-velocity components.—The
perturbation-velocity components may be obtained by
partial differentiation of the velocity po~ential. This difbr-
entiat.ion may be performed prior to the integrations indi-
cated in equations such as (17), (29), (34), and so forth.
The method is illustrated, as in reference 15, for the \ving
of figure 12, which includes only supersonic leading edges in
the forward Mach cone, If the velocity potential is oomputed
at point (z,y) and at point (x+ dz,y), the result is

. u
SS

0-d( dqQ=—;sW+-lw+ (40)

?)(0 Uff (“+%’’)’’”~+ Gdx=—F
~ J(w–g)’–p’Q/-q)’–

: (-JX
s

c dq
abd ~(x–.$)’-(y(q)q)’

(41)

where the line integral is evaluated along the line abd, and
the coordinate : may be eliminated from the line integral
by means of the equation for the leading edge. Subtraction
of equation (4o) from equation (41) and cancellation of d%
yield

ap u
SS

$dtdq

z=–; s J(w–g)’–p’(y–#-

This resu~tmay ako be obtained by formal differentiation of
equation (40). In i similar manner

(43)

Equations (42) and (43) may also be written in the oblique
coordinates as

(42a)

(43a)

/

,/’
,’

,,’
/’

,’
.’

>.‘

I

\

-.
‘.

‘.
‘.

‘,
‘.

‘.
‘.

‘.
‘,.

FIourrE Il.-Wing plan form and areas of upweeh for equations (38)and (W).

Iu

Iu

x+dx,~
(b)

(b)Wingpoint (z+ft, v).

FIfiuRE 12.-Ffel& of integration for eqrmtiom (40)to (42).
.—
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The Iine integral of equation (42) corresponds to the discontinuous change in fiow direction that occurs aIong the
Jeading edge, and the surface integral corresponds to continuous changes in slopes over the wing plan area. (Evaluation

of the surface integral tdong lines of discontinuous ‘fi results in additional ~~ integrals.) The imp~ses that lead tO the ._

pressure distributions on supersonic wings are thus generated at points where the flow direction is altered. For flat surface
wings, these impulses are generated onIy along the leading edge.

When the surface velocity potential is influenced by an upvrash field, as in figure 4, the velocity potential may be “
calculated from equation (29). The evaluation of the perturbation-velocity components is similar to the derivations of
equations (42) and (43) except that there is effectively a shifting line of discontinuous wing slopes between the plan areas
SW,,and SW,,,which adds line integrals to the calculation (reference 15). The partial differentiations of P with respect to
z and y (fig. 4 (b)) have been evaluated in appendix B and are expressed in oblique coordinates as

where rn is the wing-plan-boundary equation r=rJ8J. The
more complicated expressions, such as equation (34) and
combinations of equations (35), (36), and (37), cm be
treated in a similar manner.

The expressions for the perturbation-velocity components
are simplified for flat-plate wings having slopes ITB=—CT=a.
(These components may also be regarded as the cent.ribut.ion
associated with angle of attack on a cambered wing.) Equa-
tions (44) and (45) may then be written

and

(47)

The line integrals of equations (46) and (47) maybe numeri-
cally or graphically evaluated by the procedures outlined in
reference 16. If the supersonic leading edge conforms to the
equation .s= –k,?’, equations (46) and (47) give

(48)

(49)

Equations (48) and (49) could also be obtain~d by partial
ditTeientiationof equation (31).

.410ngthe subsonic Ieading edge, (ru–rJ =0 and an infinity
occurs in the perturbation-velocity component of equations
(46) and (47). This infinity represents a breakdown in the
-ralidity of the liiemized theory, and corresponds to the for-

(44)

(45)

mation of a stagnation point near the leading edge of two-
dmensionaI subsonic airfoik. Even though unbounded pres-
sures may be obtained from equations (2a) and (46), these
values should be interpreted as representing some fraction of “-”
free-stream stagnation pressure (or near-vacuum condition+.
.b was observed in reference 23, discontinuities in wing-plan-

.._. —

boundary tangents along subsonic leading edges lead to dB-
continuit.ies in t-hez and y pertubation-velocity components
and in the wing loading t-alongthe Mach line from t-hedis-.
continuity.

A physical consideration of pressure disturbances from the
Wing-pIan boundaries indicates that the velocity component
lying parallel to the edge must be continuous across the wing
edge. This concept is evident from oblique-shock relations
for supersonic leading and trailing edges and may be verified
by equations (2o), (46), and (47) for a class of subsonic lead- ._
ing edges. All changes in the velocity at the fig-plan
boundary must therefore occur in the velocity component
perpendicular to the edge.

Evaluation of suction forces on subsonic leading edges.—
Area.rthe wing edge, the line integds of equations (46) and
(4’7) are zero. Likewise, the direction slope of the perturba-
tion velocity is

i)p dr,
% )

–~ (l+d~ dx
—. —
by ()fir, ‘– @ ,

()

(50)

b5
1–-&

dx
where

()@, is evaluated from the wing-pla.n-boundmy

equation. The perturbation velocity is thus normid to the
wing-tip boundary and has the value
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In accordance with reference 24, 7, and 19, this type of
?hp

variation in ~ as n~O leads to a suction force per unit

length along the leading edge of magnitude

152)

where Ffiis the force normal to the leading edge and dl is an
infinitesimal distance along that edge. If dl is expressed in
terms of dg and F is defined is the suction force in the fight
direction, equation (52) may alternatively be written ‘--

The suction force along subsonic lcading edges can thus be
evaluated explicitly by equation (53) for wing boundaries
th?t are not influenced by interacting upwash flow fields.
Equation (53) has been applied in reference -19 to demon-
strate that appropriately curved plan boundaries may lead
to wings of higher lift-drag ratio than do straightAine plan
boundaries.

Velocity potentials associated with discontinuous side-
wash.—If the upwash field lies in the wake of the wing (fig.
5 (a)), the integration function H(y)- of equations (20a),
(21a), and (22a) will not generalIy be zero (reference 15).
A discontinuity in sidewash will then persist across the
z= Oplane corresponding to the strength of the vortex sheet
trailing behind the wing. The function H maybe adjusted,
if desired, to obtain solutions for the velocity potential that
will satisfy the Kutta-Joukcnvski condition aJong subsonic
trailing edges. This condition requires that for flat-plate
wings the perturbation-velocity components are continuous
across the trailing-edge boundary. For finite-thickness
wings the velocity components must be finite at the subsonic
trailing edge, The immcdi~te problem is to. cst.ablish the
part of the velocity potential on the surface of the wing that
is associated with the function H(y).

The region S’D,Iof figure 5 that contains the vortex sheet
may be temporarily considered as a portion of the wing.
The virtual wing tip is then the y= constant line denoting
the junction between the leading and trailing edges. If
equation (29) is applied to the virtual wing-tip region SD,l
of figure 5 (a), there results (in the notation of fig. 5 (b))

u
SS

UTdr d.i u
SJ

(u,+ uT)drds———
‘r A’41r %1 ~~—?)~—= %,2 2 J(rfi-r)(sD-@—

I& SS (AO+&Jdr ds
%,1 J(rD—r) (8D—8)

If this expression is compared
result is

...—
(54)

with equation (20a), the

u
[ss(~+k)drCLS

SS
(c.–aT)dr dS

ll=–AX
—.

‘D,l~(TD—T)(SD –S) %d 2 ~ (r~—r)(s~—i)1
(55)

In the notation of figure 5 (b), equation (55) maybe written

U ‘D

J
iir

[s
s~(r)(tJr—CJds

“H=–= ,D ~~ —+
Jl(r) 2 ~(8D—s)

s
‘D (~o+hH)dS

$,(0 JiFs 1
(56)

By use of Abel’s solution (references 14, 20, or 21), equa-
tion (56) may be inverted to yield

—

(56a)

where Z@) has been expressed in obliqu~ coordirmtcs.
Equation (56a) may be integrated by parts to givo an alterna-
tive form

(56b)

The velocity potential at points on the wing influenced by
the subsonic trailing edge (fig. 5(c)) is

(57)

The second member of equation (56a) or (56b) may replace
the first member along lines of constant SD (or SW) that
extend.across the wing. Equation (57) then bccomcs

(58)

This expression reduces to equation (29) if H is zero. Inas-
much as H may be arbitrarily chosen, an infinity of solutions
for regions influenced by subsonic trailing edges can satisfy
the boundary conditions for thin wings at supersonic speeds.
On the other hand, if the Kutta-Joukowski condition is ap-
plied, onIy one solution remains—the velocity potcntird that
allows the flow to leave the subsonic t.railingedge smoothly.
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Once the function II is chosen, equation (56a) may be
applied to e-mluate the upvmsh (or h) over the wing edge.
The slope A has been considered as the sum of two sets of
sdopes, one independent and one associated with H.

X= AO+AE (25)

Equation (56b) may then be written as separate equations
for & and AHas

and

Jf r g~’D
s

.3iH(0).—— - —
U % >~r—rD U\~D

The bracket of equation (57) codd thus be replaced
first member of equation (59) if desired.’

(27a)

(59)

by the

The solution of equation (27a) is obtained from equa-
tion (27d). The solution of equation (59} foIIovis from
Abel’s reIation and may be written in the form

This is the steady-state solution of equation (24), which cotdd
have been obtained directly. If H(0) =0, equation (60)
may dso be written as

J-f a ‘
J

da.

s
r%D

(60a)b= ~?r &i 82(7) \=D——— —— __
6D >l,—TD

Substitution of AOfrom equation (27d) and k~ from equa-
tion (60) into equation (25) yields the slopes of the up-wash
streamlines in the wake of the fig (r@on ~~,1 of fig. 5 (a)).
If the region SD~is treated as part of the wing, the s~oPesof
the st.reamhes’ in the region ~n,z may be evaluated from
equation (27d). As in the derivation of equations (36a)
and (37], the influence of interacting upwash fields may
then be determined.

The velocity potential associated with H in equation (58)
may be written in either of the alternative forms

where s. has replaced 8Das in equation (58). The question
arises as to the nature of the velocity potential and the
perturbation-velocity components that result from the
function iY, which depends only on the coordinate y. Two
approaches are followed to answer this question. The fist
approach is to evaluate YE when ~ assumes the form of a
power series. (This approach is useful for e.splicit evaluation
of p for wings with polynomial plan-boundary equations.)
The second approach is accomplished by direct integration
and d.ifl!erentiationwithout further assumptions on the form
of H.

The function H(y) =“H ( 8wL~rD) is assumed expansible

in a Taylor’s series of the form

(Because EI(0) is zero, a. will be zero for isolated viings.)
Substitution of H from equation (62) into equation (61)
yields for the velocity potential (see reference 15 for details)

where I’ represents the gamma function, u is an integration
variable, and r~ is a function of i3~. The integrations of equrt-
tion (62) may be expressed as incomplete beta functions if
desired.

The z component of the perturbation velocity that is
associated with H may be obtained by diHerentiation of
equation (63) as folIovm:

(64)

The infinite series is a function only of SWfor a gken pinn
boundary and Mfich number. The coefficients a.n control
the strength of the vorticity in the wake of the subsonic

dr~.
()

——
d.sw 1

t.railiig edge. The factor — representa an inverse
>Iru—ra

square-root singularity nlong the wing-plan boundmy tlmt
leads to en infinite pressure coefficient in the linearized
theory.

The z component, of the perturbation velocity in regions
influenced by a subsonic trailing edge (fig. 5 (c)) is obtained
as the sum of equations (64) and (44) (with ao set equal to
zero)
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For flat-plate.wings, a~= —UT=a and equation (65) becomes —

or

c

Z@ Ua—=— s da-d, . (1-$9’(s.)
ax 21%rrib J(rw–r) (8.–s) +

WGZ

where g(sti) represents ~ times the bracketed part of equa-

( -d”’)tion (66). The quantity 1 .= g(sm)is constant along lines

of constant sW,so that the strength of the shed vorti.city
could feasibly be experimentally determined by a single
pressure measurement on the wing surface for each”value
of sm.

If the Kutta-Joukowski ccmdltion is to be satisfied for
antisymmetric wings, all three of the perturbation-veIocity
components must be continuous across the subsonic trailing
edge. Continuity in any oge of the three components will
evaluate the coefficients an and assure the continuity of the

other two. Continuity of ~ across the subsonic trailing

edge for flat-plate wings, covered by equation (66a) for
example, requires that g(sti)= O. The solution that, satis-
fies the Kutta-Joukowskl condition is thus

The coefficients al, aA,. . . am may be evaluated by the
relation g(sW)=0, or for flat-plate wings,

(65)

(66)

“(66@

where p= ~ra— Su. Equation (68) is a power series in p
whose nt.h coefhient an may be evaluated in terms of tho
(2n– l)th derivative about p=O. Because the fist member
of equation (68)- is finite when p=O, ao=O as previously
stated. .. Differentiation of the ~st member of equation (68)
can be accomplished by successive applications of the reIation

(69)

By application of equation (69) and L’Hospital’s rule to
equation (68), the coefficients al and %, for example, are
given as

evaluated at=rs=s. = O.
.-..

“’=%(l-**)’a[(*-’)’’-l)+l:+-:(&l)l-

‘*(l-* 2)-’r#(*Y+*al[(%-l)’-(2-’)-’-:(’-*2)l
(71)

evaluated at r~=~W= O. The other coefficients may be simiIarly evaluated. If winga with straight-line plan boundaries are
considered (as for conical flow wings), all the coefficients al, az, a~j . . . anexcept the first are zero. For curved plan bound-
aries, higher-order terms in the seriesexpansion for ZZare generally requ~ed to satisfy the Kutta-Joukowski condition. Tho
expressions (70) and (71), which determine the first two coefficients in the series expansion (equation (62)), me unbounded if
drA
~ approaches unity at the origin.

w

Once the coefficients al, a2, aa, . ,. . a.. have been determined, the velocity potential and its partial de.rivat.iv~~~ith
respect to z are given by equations (63) and (64), respectively. The y component of the perturbation velocity is obtained
by partial differentiation of equation (63).
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The 2 component of the perturbation velocity associated with the function E7may be obtained by substituting equa-
tion (62) in equation (60) (a.o=O):

[

4X3X2X1 (r—s2)a 1~(r–s2) (~–s) ~X~(r–8)2~+:x:x$ 3X2 + 3X2X1 –
---

[ 1}
z(r–tiJ2(r–s)~X~ (r–s2)(r–s]2+~X~X~ (r–~)3 +

as 5X4X3X2X1 (r—sJ3 2
W7531 y+ 4X3 + 4X3X2 4X3X2X1 ... ‘-”- (72)sx~xqx~--

The terms factored by al, a3,aA, . . . ando not appear for
wings with straight-line phm boundaries.

An aIternat,iveapproach to the detemninat.ionof the form
for the perturbation-velocity components associated with the
function H may be obtained by integration and diHerentia-
tion of equation (61a). This manipulation is accomplished
by interchanging the order of integration with respect to r
and ?%, which of course alters the hmits of integration,
giving

or

Equation (61c) maybe integrated by parts to give
native form

(61c)

the rdkr-

(61d)

Thus, either by equation (61c) or equation (61d), PH is
evaluated by a line integral across the vortex field along the
constant SW31ach line.

The z and y components of the perturbation velocity may
be obtained by differentiation of equation (61c).

If equation (73) is rewritten, with the use of the identity

(&#+&)%’-%
there results

(73a)

Integration by parts of the fourth term in the second member
of equation ~73a) leaves

or

(The series of equation (64) maybe obtained from equations
(73b) and (62) by successive integration of equation (73b)
by park.) In a similar manner,

(74)
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Thus the perturbation-velocity components (associated with
H) on the surface of the wing are given by simple line integrals
across the vortex field along the constant SwMach line. For
a given wing plan, the limeintegral of equation (73b) (and
the first line integral of equation (74a)) is a function only of
the shed vo~ticity and of the coordinate SU(as was similarly
noted for equation (64)). The form of equation (73b)
suggests that the equation might be more general than the
example for which it was derived.

If the Kutta-Joukowski condition is t: ~ satisfied a~ong

the subsonic t.raiIingedge, the value of ~~ that appears in

equations (60a), (61a), (73), and (74) must s~tisfy the integral
equation -.

H(o)

J

~H drD ~
r2(Sw)brD

J

(c,–u,)d.s
>=+ au “- —= ‘4 bd 2&rI–8

(75)

where u depends on. r~(Q and s. This expression results
from adding the terms of equations (44) and (73b) that give

infiniti values of ~ along the subsonic trailing edge (that is,

those terms that contain the factor. (*-’)/4F) .,
and equating these terms to zero. An a.lt~native .evaluation
of H may be obtained from equation (22a) and the known

?)p
values of q or ~ for solutions satisfying the Kutta-

Joukowski condition

If in equation (76), % and ~B are divided into those com-
ponents msociated with and independent of IT (as in cquntion
(58)), only the part associated with H remains after the
subtraction. The part associated with ~ is zero from –rn
up to thg SW=OMach line and has the value_(from equations
(73b) and. (75))

from the 8W=0 Mach line to tho subsonic trailing edge.
(The + or th~ – sign is used for the top or bo~tom wing
surface, respectively.) Application of the t.rtinsformntion
equations (16) for. constant values of y (which infers that
dru=dsw) to equations (76) and (77) then gives

where Z3 represents the plan-boundary equation Z=zz(y).
This value of H may then be inseried in equations (60) and
(74) to complete. tho evaluation of perturbation-velocity
co~ponents associated. with the discontinuity of sidewtiih
behind Subsonic (or supersonic) traiIing edges,

Acceleration-potential derivation of solutions satisfying
Kutta-Jo~kowski condition,—.idditional insight, into the
origin of~ressure forces may be gained by deriving- t>~
expressions for the influence of tho upwash field in terms

aw
of the acceleration potential ~ rather than W. This deriva-

tion may proceed either from equation (42a) nnd figure 4 (a)
or from equation (44) and figure 5 (b) under the assumption
that h is finite along the wing boundary in conformnnco
with the Kutta-Joukowski condition. Both derivations
yield the same restitt, but the second approach is simpler
to justify. If equation (44) is applied to the virtual wing
region SP,l of figure 5 (b) for both top n.ndbottom surfnccs,

..there results

(79)

The la.st two terms arise in the evaluation of the surface integral from the discontinuity of stream~ine ~OPCSalong
the trailing edge. Inasmuch as equation (79) holds for all values of r., there results

(If equation (27a) is differentiated partially with respect to r and sD, addition of
equation (79a). Inasmuch as equation (27a) excludes the effects of shed vorticity

the two resulting cqua,tiona gives
whereas equation (79a) does not,
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the inference may be dram that equation {27%) could
cases by the addition of a function of r—sD. This fact was

to figure 5 (c), ~ on the surface of the wing is

g~

V7LTGSAT SUPERSONIC SPEEDS

include the effects of shed vort.icity for time-independent
shown in another manner in reference 15.) With reference

Elimination of k from equations (79a) and (80) gives

(80t~)

Equation (80a) is the same as equation (65) except that the
term generating infinite loads along the wing-plan boundary
is missing. Thus, when the brace of equation (65) is zero,
the Kut.ta-Joukowski condition appfies and equation (80a)
results. The vorticity in the wake of the wing under such
circumstances is of sufficient strength to cancel the contrilm-

tion to ~ of the line integral tdong bd.

Three approaches have been presented to show that the
Kutta-JoukowJci condition can be formtdly satisfied along
subsonic t,ra.iIingedges of thin wings at supersonic speeds.
Each of these approaches implies a discont-h.mityin sidewash
(that is, a vortex sheet) behind the wing of sufficient-strength
to cancel the term in equation (44j evaluated by the line

‘integral along bd. This term appears to depend only on
those wing slopes lying on bd, which can only influence the
flow field along or downstream of this S1ach line. On the
other hand, the contribution of the function IZ, which opposes
t:hisintegral for Kutta condition solutions (equation (75)), is
determined by the discontinuity in sideviash established
upstream of this Mach line (except for the isolated point d).
The implication is that the Kutta-Joukowski condition
cannot be satisfied without an interchange of cause and
effect. Once the flow is established, however, the boundary
conditions may be satisfied by solutions fuIfiI1ingthe Kutta-
Joukowski condition. Application of the KuttaJoukowski
condition would seem to imply at least one of the fol.Iowting:
(a) 130vrnstrearndisturbances might be felt upstream through
the mike of the wing or through the boundary layer whether
iuitialIy or continuously. The apparent interchange of
cause and effect in the linearized ca.kdation would then be
negated; (b) only the vortex line from the point d contribuks

936846—51—7

aptong the line SW‘o&a (This a.rgurnent-seems to be in opposi-

tion to equation (73b).); (c) the wing slopes must change
continuously in approaching the line bcl (as they would if
they were represented by a power series) so that the apparent
independence of the line integral of forward wing slopes
might not be reaL The application of the Kutta-Joukowski
comlition ab supersonic speeds is still fin open question,
which should be determined by exper”uent..

In order to ilhstrate the KuttaJoukowski solutions, the
perturbation-velocity components of a thin, flat, trapezoidal
wing -witha subsonic trsihg edge on the tip may be deri~ed.
The wing equations ares= —kw and .s=k~r. Either by inte-
gration of equation (67) or when the singlllar term of equa-

tion (4s) is dropped, ~ may be derived as

—’m-LJmE?“1’
by ULY(k,+-1)—.—
a z /s?r >&L

(Equations (78) and (73b) also lead to equation (S1) for this
ewuuple.) From equation (70),

az=aa=. . .= aX=O

This value may be inserted in equations (62) and (63).

Addition of ~ calculated from equation (63) or (74a) and

3P from equation (49) gih-es
G

Liketie, from equations (72) and (27e),
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The vtdues of the perturbation velocities, equations (81) to
(83), are constant along radial lines from the origin showigg
that the flow is conical. This fact resulted from the use of
straight-line plan boundaries, but was not other}tise assumed
in the derivation of the perturbation-velocity component...

Circulation and lift.-As in subsonic-wing theory, the lift
per unit span is dhectly related to the circdation, m shown.—

in reference 25. The lift increment per unit span ‘# is

given as

JG=&U2 ‘t ‘
dy 2 p -.ce “’-’-c’:’)dx

=-p~f’:’(~+)dz (84)

where the subscript t indicates along the trailing edge. In-
tegration of equation (84) giv~

dL~= ‘pu(~’– w)”;= 2PUH(y) =Pvr (84a)

where I’ is the circulation evaluated along a wing chgrd.
Equation (t34a)is the familiar subsonic ~e.lationand maybe
used to evaluate experimental wing lifts from wake measurem-
ents, or to evaluate the.theoretical Iift of a wing as a line
integral across the span. The velocity potential along the
trailing edge is, of course, a-function only of y, x having been
eliminated by means of the t.r.ailiig-edgeboundary equation.

Computed examples of perturbation-velocity compo-
nents.—The thcoret.ic.alexpressionsfor the velocity potential
near thin wings at supersonic speeds describe the flow chara-
cteristics. The mature of these flows may be clarified by
numerical examples for fla.t-pIatewings. The perturbat.ion-
velocity components in regions influenced. by the tip
of a, trapezoidal wing are computed to illustrate the effects
of subsonic leading and trailing edges. In qddition, load
distributions associated with angle of attack, uniform pitch,
and uniform roll are illustrated for a complete wing.

The effects of subsonic leading edges on the perturbation-
velocity components may be illustrated for the trapezoidal
wing of figure 13 (a). The supersonic and subsonic Ieadmg

edges are defined by the equations s].= —~ and ss=2r. If

these values are substituted into equations (48), (49), and
(27e), the perturbation-velocity components in the z=O
plane are obtained. These components are presented. in
figure 14.

bQ d @ are also includedThe two addends that give ~ an au
.

on figures 14 (a) and 14 (b). The arc-tangent expression
controls the value of these two velocity components near the
N!ach line from the subsonic and supersonic leading-edge
intersection, but the inverse square-root singularity becomes
increasingly important ne.a.rthe wing tip.

The value of& rapidly changes near the innermost hfac.h

line from the origin, reaches an extreme, and then becomes

unbounded near the tip, ~ The-quaniity ~) on the other

hand, changes monotonically from a positive value on the
innermost Ivfach line to an unbounded negative value along

the tip. The value of ~ (fig. 14 (c)) is likewise unbounded

in the upwash field in the vicinity of the wing tip, but rapidly
drops as& ~creases

x . The upwash is zero aIong the outer-

most Mach line from the origin.

1“

1.

u

—

?“

r

(b}

(a) Subsonfo leading edge.
.

(b) SubsonIa traiIiig edge.

FIGURE13.-Tmpezoidal-v? ing plan forms.
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If the trapezoidal wing is flown backwards, the equations
for the wing boundaries are sI= —2r and sa=O.5r. In this
case the wing tip is a subsonic trailing edge for which the
KutAa-Joukowski conditio~ may be (arbitrarily) imposed.
The three perturbat.ion-wdoc.ity components, which Were
calculated by equations (81) to (83), are presented in fig-
ure 15.

Z@
Both ~ and. ~ monotonically change from the two-

dime.nsional regions to the wing tip. In the up-ivrishfield

IPYOCP
–~<y< , & is zero and ~ ~1s con&mt, corresponding to

a constant strength of vorticity in the wake of the wing.

The velocity component ~ is constant across the wing, then

monotonically increases in the upwash field from the value

‘– O (corre-along the wing tip to infinity along the line ~ —

spcmding to the limiting vortex Iige).
.-

tip of tra~ezoidal wing with subsonic leading cdgm
—

fiIany of the. equations presented heretofore mo given in
terms of the wing slopes u. These Slopcsj however, ruw
related to the induced z component of the perturbation
velocity by equation (19). The formulations am equally
valid when w is induced. by either steady wing motions or
by wing geometry. The effective wing slopes on a flat-plntc.
wing-%ssociated with lift, uniform roll, and. uniform pitch
are, for example,

lift:

pitch:

(85)

where m and n are the rates of roll and pitch a“ndToand 40

are the coordinate distances to the roll and pitch axes,
respectively. If these wing slopes are subst.itutcd in equa-
tions such as equation (44), the load distributions associated
with-lift, steady roll, and steady pitch may bc determined.
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The following table lists the type of equation that could
be used to evaluate the -relocit.ypotential and the x compo-
nent of the perturbation velocity for each of the wing
regions of figure 16:

..[

wing
region

I
II

IrI
n’
V

VI

b ~u,.ta.JotioW*i Oonmon
Egua:o;iordocit y Eq~tion for ~ (

imposed along eubsork traihg edges)
— —

(am------------------------- (Lo----------------------------------
(a)-------------------------- (49-------------------------------
(5S3or C29)and (611J)-_ . . . . (an-------------------------------
w -------------------------- ~ot presented. Eqnation kaimilar to (44).
(34)end (61b)---------------- Same aa region IV, emept term of form

fi3b) tiom aubamda trdtng edge is de-
ktd.--_–------_ —--—...-_–. . . . . . . . .

(34)end (61b)applied to both Same as region lT, except both terms Of

subsonic trailing edges. _.. form (X3b) from two sokonfc trailing
edges are delta -----------------

The cahmlat.ionsof reference 17 directly applied the equa-

tions for ~ to obtain the load dktributione.

The load distributions associated viith lift, roll, and pitch
for the wing of figure 16 are presented in figure 17. These
distributions (reference 17) are shown in contour-map fashion
giving lines of constant loading. The dashed lines are
either the rolling or pitching axes or the Mach lines origi-
nating at, discont.inuitieson the wing-plan boundary.

The wing loads associated with angle of attack (fig. 17 (a.))
approach infinity along subsonic leading edges and are
zero along subsonic trailing edges. The lifting pressure
coefficients are emical in the forward central portion of the
vcing, genemdly decreasing toward the rear. The loadin~
are negative on the rearmost portions of the wing. This
reversal of liit. results from the pronounced eflect of the”
upvrash on the downstream parts of the.wing.



AERODYNAMICS OF THIN FINITE TKCNGSAT SUPERSONIC SPEEDS 93

As in the case of the Iiftiug wing, the loads associated with
uniform roll and pitch (figs. 17 (b) and 17 (c), respectively)
are intlrde along subsonic Ieadimg edges and zero along
subsonic trailing edges (to satisfy the Kut ta condition).
The I&s of constant load distributions associated with ro~
(fig. 17 (b)) are nearly parakl to the roll axis on the forward
central portiona of the wing. Considerable distortions are
evident toward the rear, with pressure ishmds occurring.
Positive pressure coefficients appear on the front. and back
parts of the wing, with negative mdues between.

u1--1&= s

FIGU= 16.—F0rm of wing anaIyzed. M= Z.

The load lines associated with pitch (fig. 17 (c)) are rougldy
parallel to the pitch axis for the central regions ahead of that
axis. Pressure islands occur at the rear of the wing. An
interesting observation is that the loadings associated with
pitch change sign ahead of the pitch axis.

The force distributions of figure 17 may represent the
loadings of a variety of wing-plan boundaries. The wing
plan may be ahered or moditied aIong any shaped supersonic
triding edge without altering the loadings in any region for-
ward of that edge. Likewise, if other rmesof pitch or roil
are desired, the new loadings may be obtained by super-
position of values shown. If axss ~1 and & are desired,
equations (85) become
roll:

The shift in the asis (~o–~l] ths superposes a Iifting load
distribution for a wing at angIe of attack eqyimdent to
m
~ @ —?J on the original loading associated with roll.

111-TIME-DEPENDEN!CF~OWS

The concepts that yield steady-state schtions for the
velocity potentia.I of finite wings at supersonic speeds may
also be appIied, in part, to time-dependent probIems. The
evahation of the upwash fieId at a local poin$ however, is
complicated by the fact that a knowledge of the wiug-slope
time history is required. If the wing slopes do not vary too
rapidly with time, approximate solutions may be obtained
that nearly satisfy the boundary conditions in the pkme of
the wing. The theory is illustrated for a Iinearvariation with
time of the wing slopes, which gives an exact solution.

Evaluation of isolated regions of upwash off subsonic

.- -.

Ieading edges.—Equation (23) maybe kitten for the
of figure 4 (a) as

SS
‘D 8D A=,b dr d.s

SS
‘D WI(cB—aT)a,bdr ds

o %(r)~(r~–?j (8D–S)= O ‘I(O 2~(rD–?j (8=–8)

wing

(86)

For steady-state soIutions the slopes r and x are inde-
pendent of TD;the integration of equation (86) with respect
to s is therefore independent of r~ and the reduction to the
fu-st-order integraI equation (27a) is permitted. For the
unsteady problem, the slopes u and x of equation (86) are
functions of the time delays r= and rb, which depend upon
r~ and sD, and the value of the integration with respect to s
depends explicitly on the vrdue of r~. The reduction of
the second-order integnd equation to a first-order equation
by equating the integrations with respect to s is therefore
seldom justitled. NTCJpubIished closed-form solutions of the
second-order integral equation (equation (86)) are known
for arbitragr wing slopes, but approximate solutions are
obtainable.

If the wing slopes generally are evenIy distributed, those
slopes near the forward Mach Ems (represented by
(~D–@ (s=–s)=0) ti carry the most weight in the evsha-
tion of the second member of equation (86]. Near these Llach
lines, however, the nonlinear time delays of equation (18)
become nearly linear with respect to either r or s and the
two time delays r= and 7* are nearly equal. This fact
suggests that. the slopes appearing in equations (86) may
be expanded in a power series in terms of the variable

j=+ ll(~~–r) (~D–@. The subscript a’ may refer to the

slopes or the derivatives of the slopes evaluated at j=O,
which is the same as applykg a time delay of

~D—?’ &’D-~—— —
‘“- pc + @c

(87)
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c=)

FIGUEE Ii.—hd dktrfbutkms a-ioted with sewx’al tyres of wing motion.
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(The notation Tarwill also be employed for point. (rW,SW)
rather than (rD,sD).) The expansions for u and h for the
two time delays Taand r~have opposite signs attached to the
odd power terms in J. The odd terms therefore disappear
when the two series are added

[
1a2(aBa~a’’)a’j’+(t%–uT)a,b=2(@=_@).r+~

1 w(ff~—UJ .?
~ a’ f’+-. ..1

(
Aa,b=2 ‘hat+; q&+~ a$f’+. . .

)
(89)

(88)

If the wing slopes do not vary too rapidly with time, the
higher-order terms of equations (88) and (89) are negligible
compared with (a~—a~)=l and A=,. This approximation is
equivalent to assuming that the slopes change linearly with
time in the interval r.– rb=2f. This approximation simpli-
fies equation (86) to

H‘D ‘D Aatdrds
SS

rD s:(r) (cB— UT) .d d~

.0 %(0 ~/(rD —r) (SD—s) = o w 2 q’(TD—r) (SD—s)

(,90)

ii solution of equation (90) that in form resembles equation
(27d) is

where the wing slopes (~B—~~)of equation (91) are evaluated. __
at times t—rec~and

s—u
““= (3C (92)

ln the analysis that follows, the approximate value of A
from equation (91) (which is the exact solution of equation
(90)) is applied as if it satisfied equation (S6).

Aerodynamic effects of isolated subsonic leading edge.-
A.nalogous to the steady-state equation (2@, the contribu-
tion PD of the up-wash field i3’~to the velocity potent.ial on
the surface of the wing in figure 4 (b) maybe computed by
equations (17) and (19) as

The streamline slopes k.,~ are evaluated for the point
(r, SD)at times (t– r=) and (t–,o). On the otier hand, the
evaluation of 1 in terms of wing slopes by the appro.xirnate

sD—~
equation (91) includes an additional time delay of —“#?c
The combined time delays become

Substitution of equation (91] in equation (93) then yields

The order of integration with respect to s and SDmay be interchanged in equation (95), so tha~the potential PDmaybe
represented as an area integration on the surface of the wing:

(95a)

If the approximate equation (95a) is combined -withthe con-
tribution to the velocity potential on the top wing surface
(exclusive of the upwash field), as cahxdated by equations
(17) and (19), there results

(96)

where

(97)

(Because k becomes unbounded along the subsonic lead-
ing edge, the exact time delay is employed in equation (93)
even though X is given only approximately by equation (91).
This choice also matches equation (96) to the exact solution
of Gtmr.ickand Itubinow (reference 11) along the SU=OMach
line. For many problems involving slowly changing wing
configurations, (CT).,s and (CB—@)~,E of equations (96) and

(97)
(88)

may be expanded in series form similar to equations
and (89)

(C7T).,a=2(CI-).J+ . . .

(~B–u~);m~=2(~B–uT)a~+ . . .

The value of ~ then becomes Q= (u~+a~)=, and the velocity
potential, equation (96), simplitles to

(96a.)

Equation (96a) illustrates a theorem that for moderate
time-dependent wing motions, steady-stat-e equations (see
equation (29)) may be employed if the steady-state wing
slopes are replaced by time-dependent wing slopas utihzii
a time delay of

—r SW—S—— _
“’-r;c + @c

llquation (96a) gives exact solutions (Linearized theory) if
the wing slopes vary linearly with time.)
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~ simple example in which the angle of attack of all wing eleme~ts of a flat plate varies linearly with time (reference 18)
illustrates the equation. The wing slopes may be expressed as

GB=~+’mt=—@2 (98)

These effective wing slopes may correspond to a constant acceleration of mU in the z direction of a wing at angle of
attack a. Substitution of equation (98) in equations (96) and (97) (or equation (96a)) and conducting the manipulations
for a wing whose leading-edge equation is .sI= —klr give

..—.

(99)

Substitution of equation (99) in equation (2a) evaluates the pressure coefficient as

(loo)

where r2 is evaluated at S= SW. The steady-state solution (equation (45)) results if m=O. The load distribution of a
family of wing-plan boundaries is obtained by choice of the equation T=TZ(SW). The solution for the infinite s-wept wing
results when sW=r2(sW)=0. Inasmuch as the higher-order terms of equation (88) are zero for this example, the solutions
given by equations (99) and (100] are exact.

Calculations of perturbation-velocity components,—As in the time-independen~ cases, expressions may be derived from
the approximatee equation (96] for the perturbation-velocity components. These components are obtained in a manner
similar to the cleri-rationsof equations (44) and (45), which are presented in appendix B. Direct computations of the
perturbation-velocity components in oblique coordinates yield

u
–J

‘~w t(darQ] ds

ZV?r bd -J (rw —r) (s.—s)
(102)

where the clifferentia.tions with respect to r and s are conducted with (rW—r)and (sW—s)held constant.
The evaluation of Q is especially simple for the line integrals along bd, because only the point d is common to the line

bd and the up-ivashfield so that SW=s~ for the evaluation of the wing slopes. The quantity (r~– ~=);.; is then independenfiof
SDand can be taken outside of the integral in equation (97) to give

~= b’) a,b+(@Z–dZ’(fors~ ‘sin) (103)
where

SW—8 rw—r2 (sw)——
‘“- & + /3c

(104)
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Equations (101) and (102) may then be written

ancl

99

(lOla]

—

(102?$

The z component of the perturbation velocity is calculated from equation (15)

%=%(%+%) (105)

When equations C2a), (105), (l Ola), (102a), and (96) me combined, there results for the pressure coefficient on the top wing

where the partials with respect to r and s are evaluated with (rw—r) and (s.—s) held constant. One way to perform this

d~erentiation without error is to replace ~ with (r~— (2 a,T), s, (s.—s), and t held constant by .ar+= with all of the

a t)
vwiables except. the one of differentiation held constant, and so forth. With this innovation, the operator (

~p a—.—
Z+ S+ JfUat )

The approximate solution for the pressure coefic.ienk that satisfies the Kut ta-JotiomM condition along subsonic
trailing edges is equation (106), except that the integral along the line bcl is deleted. This conjecture has been
demonstrated for a linear time variation of wing slopes in reference 26.

LEWIS FLIGHT PROPULSION LABORATORY)

NTATIONAL ADVISORY COM-MITTEIZFOR AERONAUTICS,

CLEVELAND, OHIO, June 17, 1949.



APPEINDIX A

SYMBOLS

The following symbols are used throughout this report:
a@ al, (?2,. . . amcoefficients of power series expansion of

c,

c
F

?

f

9

g(sw)

H
k
L
1
M
‘m

~

P

Q

R
R’
T, .S

7, i

.s

t

t’

~r

‘u, .?)
w

.Y(ru, s)

I-(r, SW)

r, y, z

x’? y’, z’

100

H(y) =ao+-a1y+a2y2 . . .

pressure coefficient, ~
~ pou~

speed of sound
suction force in flight direction
suction force normal to wing edge
function

* I’(TD–r)(.s.-9)

integration function of time (herein con-
sidered as constant)

~ timesbracketed portion of equation (66)

integration function of z–Z7 and y
cOnstant
lift
distance along plan boundary
free-stream Mach number
rate of roll or rate of change in angle of

attack
rate of pitch, summation index, or coordi-

nate normal to cur~e .—
static pressure or function Jrz-8W

t@T) a,b+
&-s) (s2—s)~

~

d(z-.y-p’(g-q)’+ ’(=r)’
>~x’~+y’z+z’~
oblique coordimt es whose axes lie parallel

to Mach lines in .s= Oplane
point. of tangency of wing plan bounclary

and foremost Mach line
plan-form area
time

(1–Jl’)t+x+

free-stream velocity
vmiables of integration
z component of perturbation velocity meas-

ured positively outward from surface of
-wing

Cartesian coordinates (free stream parallel
to z-mis) (The x- and y-axes coincide for
top and bottom wing surface. The z-axis
is measured posit.ively outward from
either surface of wing.)

transformed Cartesian coordinates
.—

(x’=x, y’= #l –M’y, 2’= %-’2)

P

G

Subscripts:
o

1 ,2,...

B
D
H

T
t
w
Examples:
r2

S1

SU(1+2)

()d?lz.

.

.

=

.

.

.

=

.

Cartesian coordinates in r, y, z directions,
respectively

angle of attack
cotangent of Mach ang~e, ~~
gamma function or circulation
slopes of st.reandines (measured in q= con-

stant planes) in z= O plane between wing

boundary and foremost lIach line, h=; --

density
effective wing-section elopes measured in

q= constant. planes, u=;

time delay
perturbation-velocity potential (variation

from free-stream velocity)

free stream, axes of roll or pitch, or without
Yorticity

numbered areas or ~~-phm-boundmy
equations

time delays r., ~b,r=?,r=??,T;} ~Z,ancl 77,
respectively

bottom of wing
upwash field
associated with shecl vorticity in upwasb

field
top of wing
trailing edge
wing

curve r= r2(.s)
curve s=sl (r)
wing area 1 plus 2
derhmtive of curve r=r~(sw) -with respect

to s~
slope &t time t—~IZphs slope at time f—~b
part.of h remainiig if ~ is zero
part. of h associated with $1
difkrence between bottom and top wing

slopes at time t—r= plus this difference
at tke t—~b

contribution of up-iimh field to velocity
potent ial on top wing surface

n!



APPEYDIX B

DERIVATION OF EQUNI’IONS(44) AND (45)

The derivation of equation (44) in Cartesian coordinates is
presented in reference 15. An alternative derivation in
oblique coordinates is presented herein. The rm and SE
components of the perturbation velocities are obtained for
each of the areas Sm,land SU:Zof figure 4 (b) in a manner
analogous to the derivation of equation (42) of the text..
The velocity potential at, point- (r~, s~) =m.ciated ~th
the area S&l is

?%+dru?,%u
Niecch A

The potential an infinitesimal distance in the r direction from
the point (r., SJ may be written

Subtraction of equation (Bl) from equation (B2) leaves

In a simiIarmanner

ayl u (T
a~dr ds. J CTdr

+‘& ab ~i(r.–r) (sU–S)K=X= , Sw,l \/(rW—r) (Sin-s)

U dr~s (TTds——
~~~ 0!S. bd ~/(Tu–~) (SW–S)

The velocity potential associated with the area
the upwmh field) fo~ows from equation (29) as

~TJT(wE+u=)dr ds
T%= ~~=——.

. s.,, 2J(rW–r) (s.–.s)

(B4)

S.,, (and

(B5j

b _—-

‘..
‘..

‘.
‘.%

-.
%.

‘.
‘.. ‘.

‘..
-. s-. J,

‘. \
-.

*. .’.,
.

-..
‘.

. .
P* +drw, S.

Sketch B

The potential at. (rw+dru,sm) may be written as

(B6)

Subtraction of equa~ion (B5) from equation (B6) leaves

Simiarly,

@s)

Addition of equations (B3) and (Bi), and also equations
@4) and (BS}, gives the perturbation-velocity components
in the r and s clirections, respecti~ely, as
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ap_ u“-ssa$dr_~

~– –h!fr Sw,lJ(rw—r)($w—s)— -“’=: ““” ‘-”

(B1O)

1,

2.

3,

4.

5.

6.

7.

8.

9.

10,

11.

12.

13.

The x and y components of the perturlmtion velocity, wtich
are given by equations (44) and (45), may be obtained from
equations (B9) and (BIo) and the transformation equations

%“$(%’+%)
%=%%91

(BIl}

Ackeret, J.: Air Forces on Airfoils Moving Faster than Sound.
NACA TM 317, 1925.

Jones, Robert T.: Thin Oblique Airfoils at Supersonic Speeds.
NACA ReP. 851, 1946.

Puckett, Allen E.: Supersonic Wave Drag of Thin Airfoils. Jour.
Aero, Sci,, vol. 13, no. 9, Sept. 1946, pp. 475-484.

Busemann, Adolf: Infinitesimal Conical Supersonic Flow. NACA
TM 1100, 1947.

Stewart, H. J.: The Lift of a Delta Wing at Supersonic Speeds.
Quarterly APP1. Math., vol. IV, no. 3, Oct. 1946, pp. 246-254.

Hayes, W. D., Browne, S. H., and Lew, R. J.: Linearized Theory
of Conical Supersonic Flow with Application to Triangular
Wings. Rep. No. NA-46-818, Eng. Dept., North American
Aviation, Inc., Sept. 30, 1945.

Brown, Clinton E.: Theoretical Lift and Drag of Thin Triangular
wings at Supersonic Speeds. NACA Rep. 839, 1946.

Heaslet, Max. .4., Lomax, Harvard, and Jones, Arthur L.: Vol-
terra’s Solution of the Wave Equation as Applied to Three-
D1mensional Supersonic X~rfoil Problems. NACA Rep. 889,
1947.

Heasiet, Max. A,, and Lomax, Harvard: The Use of Source-Sink
and Doublet Dktributions Extended to the Solution of Arbitrary
Boundary Value Problems in Supersonic Flow. NACA Rep.
900, 1948.

Schiichting, H.: Airfoil Theory at Supersonic Speed. NACA TM
897, 1939.

Garrick, 1, E,, and Rubinow, S. I.: Theorctical Study of Air
Forces on an Oscillating or Steady Thin Wring in a Supersonic
Main Stream. NACA Rep. 872, 1947.

Evvard, John C.: Distribution of Wave Drag and Lift in the
Vicinity of Wing Tips at Supersonic Speeds. XACA TN 1382,
1947.

Evvard. John C.: The Effects of Yawing Thin Pointed Wings at

REFERENCES

Supersonic Speeds. NAGX TN 1429, ‘1947.

14. Evvard, John C., and Turner, L. Richard: Theoretical Lift Die.-
tribution and Upwash Velocities for Thin Wings at Supcraonic
Speecls. NACA TN 1484, 1947.

15. Evvard, John C.: Theoretical Distribution of Lift on Thin TWnuls
at Supersonic Speeds (An Extension). NACA TN 1585, 19.18.

16. Cohen, Clarence B., and Evvard, John C.: Graphical Method of
Obtaining Theoretical Lift Distributions on Thin Wings at
Supersonic Speeds. NACA TN 1676, 1948..

17. Moeckel, W. E., and Evvard, J. C.: Load Distributions Duc to
Steady Roll and Pitch for Thin Wings at Supmonic Spcerk.
NACA TN 1689, 1~~.

18. Evvafd, John C.: A Linearized Solution for Time-Depen~ent
Velocity Potentials near Three-Dmensiona.l Whlgs at Supmmnic
Speeda. NACA TN 1699, 1948.

19. Cohen, Clarence B.: Influence of Leading-Edge Suction on Lift-
Drag Ratios of Wings at l%pers.onic Speeds. NACA TN 17~8,

1948.

20. Whittaker, E. T., and }~atson, G. N.: hlodcrn Analysis. The
hhcmillan Co. (New York), 1943, p. 229.

21, Bosanquet, L. S.: On Abd’s Integral Equation and l%acti~n~l
Integrals. Pmt. London Math. Sot., vol. 31, ser. 2, 1930,
pp. 134-143.

22. Hayes, W. D., and Llnstofie, ”H. A.: A Development of EYvWi’s
Supersonic Wing Theory. Rep. No. AL-746, Acrophysics ~b.,
North American Aviation, Inc., Aug. 20, 1948.

23. Cohau, Doris: The Theoretical Lift of Flat Swept-Back Wings at
Supersonic Speeds. NACA TN 1555, 1948.

24. Grammcl, Richard: Die bydrodynamiscbcn Grundlagon dcs
Fluges. Friedr. Vieweg & Sohn (Braunschweig), 1917, pp. 15-23.

25. Mirels, Harold, and Hacfeli, Rudolph C.: U~nc-Vortex ‘hwry for
Calculation of Supersonic Downwash. NACA TN 1925, 1W).

26. Harnion, Sidney M.: Theoretical Relations between the Stabilily
Derivatives of a Wringin Direct and in Reverse Supersonic Flow.
NACA TN 1943, 1949.


